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Motivation: Climate influences Society

A location climate influences A DADE K TP IR
-Agriculture "
-Energy needs
-Water availability
-Infrastructure
-Building codes




Adaptation Planning is required
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Climate projections are necessary.




The Intergovernmental Panel on Climate

Change (IPCC) predicts that

21%t-century global surface temperature
change is likely to exceed 2°C

21st-century temperature trend
(RCP 8.5 multi-model ensemble mean)
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IPCC prediction comes from ensemble of
global climate models: CMIP5 (Coupled
Model Intercomparison Project)

cmiesmode ———  Models are averaged together to make

BCC-CSM1.1
Canions . ..
climate predictions
CESM1-CAMS5
CESM1-WACCM
EMCC-CESM 21st-century temperature trend

CMCC-CM

CNRMLCMS (RCP 8.5 multi-model ensemble mean)

ACCESS1.0
ACCESS1.3
CSIRO-MK3.6.0
FGOALS-g2
FIO-ESM

GFDL-CM3
GFDL-ESM2G >_
GFDL-ESM2M

GISS-E2-H
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC
HadGEM2-AO
HadGEM2-CC
HadGEM2-ES
INM-CM4
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR
MIROC5
MIROC-ESM
MPI-ESM-LR
MPI-ESM-MR
NorESM1-M
NorESM1-ME
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But models can have a large spread in predictions,
and individual models can perform
very differently from observations

Global surface temperature anomaly, from 35 CMIP5 models
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The traditional Multi-Model Ensemble (MME)
Approach uses the model mean to provide an
improved “best estimate” forecast

Global average surface temperature change
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The multi-model ensemble generally
performs better than individual models

Example: I’ performance index (Reichler and Kim 2008)

Calculates aggregated model errors relative to NCEP/NCAR
reanalyses for multiple climate variables

“Observations” (reanalysi

s)
ﬂ Ensemble CMIP
mean model
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Some models perform better than others:

Can we use knowledge of model performance
for a better way to combine model output?

Ensemble CMIP
mean model
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The “intelligent ensemble” method

for creating multi-model ensemble projections

Conventional method Proposed “intelligent” method
NG AN A)

© ( Climate model O ( Climate model D
ensemble ) ensemble )
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Equal- @
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average Performance :

evaluation <: satelht‘e
observations

Climate Unequal-
projections weighted
W

“Intelligent”
climate
projections



Project goal:
determine future climate state

using observed current climate
and an ensemble of models

f(xobs)= AX
Observed Per.turbed
. climate
climate

state

“Perfect Model” approach is used to investigate
relationships between climate state and the climate
sensitivity to a perturbation.
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Previous work has explored model performance
and ensemble-weighting metrics

Several examples:

 Model subsets (USGCRP 2009)

 Performance metrics (Gleckler et al. 2008, Reichler and Kim 2008)
Constrained projections (Tett et al. 2013; Giorgi and Mearns 2003)

 Weighted future trends (Boe et al. 2009)

e Bias correction (Baker and Huang 2012)

“The community would benefit from a larger set
of proposed methods and metrics” (Knutti 2010)
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New climate model performance

metrics are tested:
representative of energy budget processes

Radiation budget quantities  Statistical tests

* Top-of-atmosphere (TOA) longwave e F-test for equal variances
(LW) and shortwave (SW) radiation
fluxes

e Surface LW and SW radiation fluxes
* Surface temperature

* Kolmogorov-Smirnov test for
distribution similarity

* Earth Mover’s Distance (EMD): test
of overlap in the CDF

* Local Variance: test variance of first
difference time series (Baker and

. . Taylor 2015
New process-orlented metrics y )

O 70A Radiation flux/d Surface
temperature : represent interannual-timescale radiative feedbacks
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Model data: 32 cMIP5 models http://pcmdio.linl.gov/

* ‘Pre-Industrial Control’ simulations (monthly mean, 100 years)
to create metric weights

* ‘RCP 8.5’ future simulations (monthly mean, 2081-2100 minus
2011-2030 to produce 21%t-century trends)

Observational datasets:

NASA CERES EBAF-TOA and surface monthly global-mean (full data
record: 03/2000 - 05/2014)
http://ceres.larc.nasa.gov/

NASA GISS Surface Temperature Analysis (GISTEMP)
http://data.giss.nasa.gov/gistemp/
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Step 1: Test model quality with selected metrics

M 1

OLR all-sky variance test

OLR all-sky K-S test

OLR all-sky local variance test
OLR all-sky EMD value

OLR cloudy-sky variance test
OLR cloudy-sky K-S test

OLR cloudy-sky local variance test
OLR cloudy-sky EMD value

OLR clear-sky variance test

OLR clear-sky K-S test

OLR clear-sky local variance test
OLR clear-sky EMD value

SW all-sky variance test

SW all-sky K-S test

SW all-sky local variance test
SW all-sky EMD value

SW cloudy-sky variance test

SW cloudy-sky K-S test

SW cloudy-sky local variance test
SW cloudy-sky EMD value

SW clear-sky variance test
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SW clear-sky K-S test
SW clear-sky local variance test|
SW clear-sky EMD value
Surface temperature variance test
Surface temperature K-S test - 0.4
Surface temperature local variance test
Surface temgerature EMD value
LR/Ts variance test
OLR(cloudy-sky)/Ts variance test - 403
OLR/Ts K-S test ’
OLR(cloudy-sky)/Ts K-S test
OLR Ts regression means test|
OLR(cloudy-sky) Ts regression means test| - o2
W/Ts variance test :
SW(cloudy-sky)/Ts variance test
SW/Ts K-S test
SW(cloudy-sky)/Ts K-S test |-
SW Ts regression means test| - 0.1
SW(cloudy-sky) Ts regression means test|
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Step 2: Using skill-subset of models, apply “perfect
model” approach (Raisanen and Palmer 2001)

Create set of potential “Earths” each with a continuous time series of observations

I T T

CMIP5 model
——NASA GISTEMP observations
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Step 2: Using skill-subset of models, apply “perfect
model” approach (Raisanen and Palmer 2001)

Create set of potential “Earths” each with a continuous time series of observations

CMIP5 model
—"Perfect model"
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* For each “perfect model” (potential Earth), the performance metrics
are tested on one simulation (Pre-Industrial Control), then applied to a
different simulation (RCP 8.5 future trends), linking present-day quality
with a future state.

* Metric values are used as model weights to create unequal-weight
ensemble mean trends.

Metric score:
(tested against
perfect model)

Model 1 0.8

Model 2 AV\"W 0.3

“Perfect” PN A

model

Pl-Control
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* For each “perfect model” (potential Earth), the performance metrics
are tested on one simulation (Pre-Industrial Control), then applied to a
different simulation (RCP 8.5 future trends), linking present-day quality

with a future state.

* Metric values are used as model weights to create unequal-weight

ensemble mean trends.

Metric score: RCP 8.5
(tested against future trends

perfect modeI)

Pl-Control

Model 1

Model 2 ’/\\(\A,/\VV\,\J\V 0.3 W
“perfect” W W{/\//ﬁ

model

Model
weight:

0.8 Weighted
T mean
0.3 trend

—

Evaluated »/

against
“real” trend

* Metric-weighted ensemble means which have the least error compared
with the “perfect model” are considered the best-performing metrics.
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Reichler and Kim (2008) I? performance index
is used to compare metric quality

Metrics which perform well indicate a physical link between
present-day model quality and reliability of projected trends

Best-performing metrics: Worst-performing metrics:
O 32 OLR(cloudy-sky)/Ts K-S test WV 7 OLR cloudy-sky local variance test
@ 24 SW clear-sky EMD value B 17 SW cloudy-sky variance test
7 31 OLR/Ts K-S test V¥ 15SW all-sky local variance test
41
20 4
Metric- 37 29 14 9 35 13
_ 24 27 2228 11 33 23 121 39 15 17 7
weighted WW.H‘—W—-D—’—’ ¥ v
ensemble 32 31 10 6 34 19 30 40
means 12 1638
226 818
— | l 1 | l 1 | | -
1 12 performance index value: mean across all
— “perfect model” iterations

Better performance:
20
Less error
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Step 3: Using best-performing metric, create new
“intelligent ensemble” projections

OLR all-sky variance test
OLR all-sky K-S test

(" "I [Tl
OLR all-élt\'alolclalkvaéi'arbce tlest || .L |
all-sky value
OLR cloudy-sky variance test | || |
OLR cloudy-sky K-S test
OLR cloudy-sky local variance test Il B En

OLR cloudy-sky EMD value

OLR clear-sky variance test

OLR clear-sky K-S test

OLR clear-sky local variance test

OLR clear-sky EMD value

SW all-sky variance test

SW all-sky K-S test

SW all-sky local variance test

SW all-sky EMD value

SW cloudy-sky variance test

SW cloudy-sky K-S test

SW cloudy-sky local variance test

SW cloudy-sky EMD value

SW clear-sky variance test

SW clear-sky K-S test

SW clear-sky local variance test

SW clear-sky EMD value

Surface temperature variance test

Surface temperature K-S test

Surface temperature local variance test

Surface temgerature EMD value

LR/Ts variance test

OLR(cIoudy-sky)/T;sA variance test
1

- oa Use metric values
as model weights
T h to create unequal-
OLR(cloudy:sky) T regEeSl Mance test| - o2 weighted mean
SRR projections

SW(cloudy-sky)/Ts variance test

SW/Ts K-S test

SW(cloudy-sky)/Ts K-S test

SW Ts regression means test|
SW(cloudy-sky) Ts regression means test

Metric mean NN
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Results: new 21%t-century projections (surface temperature)

“Intelligent" ensemble mean temperature trend (°C)

Global-mean surface
temperature trend: 3 °C
(0.1 °C higher than the
traditional equal-weight
MME)

The “Intelligent Ensemble”
predicts about 10% higher
regional surface
temperature increases than
MME

Contours are shaded only
where the difference is
statistically significant
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Results: new 215t-century projections (precipitation)

"Intelligent" ensemble mean precipitation trend (cm/year)

80
60 _
The “Intelligent Ensemble”
40 predicts more intense
20 precipitation increases in the
tropics, especially in the
0 South Pacific Convergence
220 Zone (SPCZ)
-40

Difference between "Intelligent" and Equal-weight ensemble means (cm/year)
: 14

12 Contours are shaded only
10 where the difference is
statistically significant

18

16

4

2

0
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Results: new 21%t-century projections (surface
downward SW radiation)

"Intelligent" ensemble mean surface shortwave radiation trend (W/m?)
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4
3
2
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0

Higher surface radiation:
less clouds

The “Intelligent Ensemble”
predicts 10-20% less clouds
than MME over certain land
areas, especially in
midlatitude regions

Contours are shaded only
where the difference is
statistically significant
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Results: new 215t-century projections (regional-mean weights)

"Intelligent” ensemble mean temperature trend (°C)

Regional-mean weights can
give very different
predictions: the US-mean
best-performing metric
predicts less intense
warming than the MME

Predicted warming: 3.9 °C
(0.2 °C less than MME)

Stippling indicates where the
difference is statistically
significant
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Results: 215t-century “Intelligent” projections
(regional weights)

"Intelligent" ensemble mean precipitation trend (cm/year)
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Conclusions

This project demonstrates:

 New climate model performance metrics related to radiation
processes are tested on the CMIP5 archive

* Present-day model skill is linked to quality of future projections

The results are:

 New “intelligent ensemble” projections are created and compared
with traditional MME projections

* For global-mean metrics, “intelligent ensemble” projections of
large-scale patterns remain similar, but intensity of predicted
surface temperature, precipitation, and surface radiation increase is
10-20% higher than the MME

 Regional-mean metrics can produce very different projections: the
US-mean projected warming is 3.9 °C (0.2 °C less than MME)




